Project Final Report: Sparse GeMM

Ryan Ahmed
Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX
ryan.sadad02 @utexas.edu

I. OBJECTIVE

We aim to study sparse matrix multiplication (Sparse
GeMM) algorithms and hardware accelerators optimized for
this task. Sparse matrix multiplication is a fundamental op-
eration in machine learning, scientific computing, and other
computational fields. As neural network workloads increas-
ingly adopt sparse representations, there is a growing need for
efficient Sparse GeMM. Our objective is to evaluate different
Sparse GeMM approaches, implement them on an FPGA, and
analyze their performance compared to the standard GeMM
inner product algorithm. We will investigate whether sparse
computation provides significant speedup and energy effi-
ciency benefits over traditional computations when mapped to
hardware accelerators. We seek to understand the architectural
trade-offs associated with different Sparse GeMM algorithms.

II. BACKGROUND AND MOTIVATION

Recent research in neural networks has shown that pruning
80-90% of the parameters retains nearly the same accuracy
while significantly reducing storage requirements. However,
the computational benefits of exploiting sparse matrices for
acceleration remain underexplored. Sparse GeMM algorithms
can optimize computation in pruned networks by reducing
redundant and unnecessary operations, leading to more ef-
ficient execution. This project will examine different Sparse
GeMM algorithms, evaluate their feasibility for FPGA-based
acceleration, and assess their performance benefits.

III. RESEARCH PLAN

The research steps are as follows:
1) Study and analyze various Sparse GeMM algorithms
from literature:
a) Inner Product
b) Outer Product
¢) Gustavson’s Algorithm
2) Implement and optimize these Sparse GeMM algorithms
on an FPGA using High-Level Synthesis (HLS) in Vitis.
3) Compare the performance of these algorithms.
Architecture and Evaluation Methodology:
1) Implementation Flow: C++ —Vitis HLS —FPGA De-
ployment
2) Performance Metrics: Profiling tools will be used to
evaluate execution time, resource utilization, and energy
efficiency.

Tianfang Guo
Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX
tg25697 @utexas.edu

Minseo Park
Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX
mp46753 @utexas.edu

3) Workloads: Testing will be conducted on matrices with
varying sparsity levels, including highly sparse, moder-
ately sparse, and dense matrices.

IV. EXPECTED OUTCOME

1) A comparative analysis of Sparse GeMM algorithms
implemented on FPGA.

2) Performance evaluation demonstrating speedup, re-
source efficiency, and feasibility between different al-
gorithms.

3) Insights into the trade-offs between different Sparse
GeMM techniques in an FPGA setting.

V. SIGNIFICANCE/IMPACT

Sparse matrices appear in many applications such as ma-
chine learning and Al, scientific computing, graph analytics,
and medicine. Thus, if sparse matrix multiplication algorithms
can improve the efficiency of working with sparse data, then
these algorithms may boost productivity in each of these fields.
In addition, they inspire further research on how to improve
their performance and efficiency to become more useful in
these various domains.

By studying and implementing Sparse GeMM algorithms,
we hope to gain first-hand experience on how these algorithms
exploit the sparsity of the data. We also hope to learn about the
bottlenecks and limitations of these algorithms so that we can
have an idea of future work on improving these algorithms.

(1] [2] [3] [4] [5]

VI. DATAFLOWS FOR MATRIX MULTIPLICATION

Matrix multiplication computes C = A x B, where A is
an M x K matrix, B is an K x N matrix, and C is an M
x N matrix [1]. This operation takes three nested loops, two
of which traverse the M and N dimensions of matrix C and
one of which traverses the shared dimension K by matrices A
and B. The order in which these loops are scheduled is the
dataflow for the computation.

We study three basic dataflows: inner-product (IP), outer-
product (OP), and Gustavson’s Algorithm. These three
dataflows have different levels of reuse for the inputs and out-
puts, so they each handle sparsity operations differently. The
intersection operation is generally created by the coiteration
loop, and values produced by this loop must be reduced.

Fig. 1. IP Dataflow Example

A. Inner-Product

In the inner product dataflow, each element of the output
matrix C is calculated as the dot product of a row of matrix
A and a column from matrix B. For each position along the
shared dimension (the number of elements in a row of the first
matrix or a column of the second), multiply the corresponding
element from the row of the first matrix by the element from
the column of the second matrix. Sum each result from the
multiplication step, and the final value is stored as the entry
into the output Matrix. An example is shown in Fig. 1.

B. Outer-Product

In the outer product dataflow, the output matrix C is
computed as a sum of rank-one matrices. In each iteration,
take a column vector from the first matrix and a row vector
from the second matrix. Multiply the column vector by the row
vector to create a complete intermediate rank-one matrix. In
this intermediate result, every entry is produced by multiplying
an element from the column with an element from the row.
Sum all intermediate rank-one matrices into the final product
matrix. An example is shown in Fig. 2.

C. Gustavson’s Algorithm

In Gustavson’s algorithm, intermediate rows are calculated
similar to outer product. Multiply each element in the current
row of the first matrix by the corresponding row from the
second matrix. Accumulate the products into corresponding
columns of the resultant matrix. After all iterations, combine
each complete row into the final output matrix. An example
is shown in Fig. 3.

VII. SPARSITY

Matrix multiplication in hardware accelerators must ac-
count for the nonuniform distribution of data in real-world
applications. In this section, we examine two regimes of
sparsity—mildly sparse and highly sparse matrices—each pre-
senting unique challenges and opportunities for optimization.

Fig. 2. OP Dataflow Example

Fig. 3. Gustavson Dataflow Example

A. Mildly Sparse Matrices

Mildly sparse matrices contain about 1-90% nonzeros [1].
They are common in neural networks because of weight
pruning and activation functions like ReLU, so accelerating
matrix multiplication with mildly sparse matrices has merit in
accelerating neural networks.

Using an IP-based dataflow, the matrix multiplication
achieves element-level intersections and reductions. The
matching nonzero elements in a row of A and column of
B are paired together for multiplication, and all results are
reduced with an accumulator to produce one output. This
makes reductions simple, but there are many intersections to
cover (M x N of them), and each of these intersections become
more inefficient as sparsity grows as matching pairs become
rare.

By contrast, an OP-based dataflow achieves matrix-level
intersections and reductions. This reduces the number of
intersections to cover (K of them), and each intersection is
useful if there’s at least one nonzero pair between a column
of A and row of B. However, the reduction complexity is
increased because more data movement is needed for the M
x N partial results.

The Gustavson dataflow achieves a balance between the IP-
based and OP-based dataflows, obtaining row-level intersec-
tions and reductions. Each nonzero element in a row of A is
intersected with a row of B, and each intersection is useful if
B’s row contains at least one nonzero element. Like the OP-
based dataflow, there are fewer intersections to cover (M of
them). And although the reductions aren’t as simple as in IP-
based dataflow, they are simpler than the OP-based dataflow
because accumulators are needed for just a row rather than
an entire matrix. Thus, this dataflow strikes a nice balance for
intersections and reductions among the three dataflows.

For mildly-sparse inputs, the IP dataflow can still be an
efficient choice depending on the representation of the data.
For example, bitvectors can be used to represent nonzero
coordinates in a matrix, so performing an intersection can
be done with a cheap AND operation. However, as sparsity
increases, the IP dataflow becomes inefficient because matches
become rare, and a different dataflow would be more efficient.

B. Highly Sparse Matrices

Highly sparse matrices contain less than 1% nonzeros [1].
These matrices are common in graph analytics and scientific
computing, so accelerating these types of matrices have merit
for these fields. However, accelerating highly sparse matrix
multiplication is fundamentally different from dense or mildly
sparse multiplication because there is low arithmetic intensity
and data reuse. Thus, data movement is the key concern.

IP dataflow is inefficient for highly sparse matrix multipli-
cation because of the low number of elements covered by each
intersection. So the OP-based dataflow and Gustavson-based
dataflow handle this type of matrix multiplication better.

Early accelerators tended to use OP-based dataflow. How-
ever, these accelerators didn’t scale very well due to the
large overhead of moving the partial results. Instead, modern

accelerators like MatRaptor, Gamma, Flexagon, and Spada,
used a Gustavson-based dataflow for handling highly sparse
matrix multiplication. With this dataflow, these accelerators
had simpler reductions and leveraged the structure in the ma-
trices better. For example, nearby rows in the matrix A tended
to have nonzeros in nearby indices, so these accelerators would
exploit this property and obtain greater data reuse out of matrix
B.

In general, highly sparse matrix multiplication lacks arith-
metic intensity and thus compute throughput. So modern
accelerators instead focus on reducing the amount of data
transfer to accelerate this application. To this end, they focus
on storage, such as caches and buffers. They also feature flex-
ible interconnects, such as crossbars, so that the few matches
are paired efficiently. However, these structures consume a
significant amount of area, leaving less area for the PEs. Thus,
these accelerators would struggle with denser matrices because
of their lack of compute hardware. More recent accelerators
try to support multiple dataflows and balance their hardware
structures so that they can handle highly sparse matrices
efficiently without trading off too much performance with the
denser matrices.

VIII. PRELIMINARY EVALUATION

A. Methodology

A Python script was written to perform preliminary behav-
ioral simulations of the dataflows. This allowed us to gain a
better understanding of the data flows that we plan to imple-
ment. We initially implemented the three dataflows naively,
operating on standard 2D matrices. Next we converted the
2D matrices into CSR format, and fed those into Gustavson’s
algorithm.

TABLE I
PRELIMINARY SIMULATION RESULTS
Dataflow Type totalOPs
Inner Product 1000
Outer Product 1000
Gustavson’s 52
Inner Product with CSR x CSC formatted inputs 192
Outer Product with CSC x CSR formatted inputs 63

B. Results

To gather performance characteristics, a counter variable
total OPs was created for each dataflow function. This counter
increments every time an operation is performed on the input
matrices; line 15 in Fig. 4 demonstrates this process in the
Inner Product function. Table 1 shows the results of our pre-
liminary simulations. Gustavson’s algorithm performed 19.2x
better than Inner and Outer Product on 2D matrices. Notably,
Inner and Outer Product also gain a large performance increase
when using sparsity aware inputs; 5.2x and 15.9x respectively.
Fig. 5 demonstrates Inner Product using CSR x CSC formatted
nputs.

C. Analysis

To be clear, these numbers are somewhat deceptive. Naively,
Inner and Outer Product iterate over both indices in their
entirety, while Gustavson’s algorithm iterates over nonezero
entries only. The extra overhead used for checking nonzero
entries isn’t accurately represented in the script. Addition-
ally, Gustavson’s is very suitable for CSR format inputs as
it is a row-based accumulation approach, while Inner and
Outer Product both operate on standard 2D matrices with
no further optimizations. However, we believe the script still
demonstrates the fact that Gustavson’s is a good algorithm for
SpMSpM calculations. We plan to find an accurate overhead
to fill in to the calculations, as then we would be able to
demonstrate the level of sparsity needed for Gustavson’s to
become cost effective.

def inner_product (A, B):
m = len(A) # number of rows in A
p = len(A[0]) # common dimension

n = len(B[0]) number of columns in
B

totalOPs = 0;

-

Initialize result matrix with zeros.
C = [[0 for in range(n)] for _ in range(
m)]

for 1 in range (m) :
for j in range(n):
total = 0
for k in range(p):
total += A[i][k] = B[k][]]
totalOPs += 1;
C[i][Jj] = total

print ("inner product_number of operations:
", totalOPs)
return C

Fig. 4. Python code for Inner Product.

IX. C++ SIMULATOR AND HLS ACCELERATOR
IMPLEMENTATION

After completing our initial Python simulations, we imple-
mented a full-system C++ simulator to better model accel-
erator behavior and simulate cycle-level performance before
translation to hardware. The simulator includes:

o A Simulator class that coordinates data transfer and
computation.

e A CPU module for matrix preprocessing and communi-
cation.

o Accelerators for Inner Product, Outer Product, and
TRGT algorithms.

o A CSRMatrix struct for sparse data representation.

Once validated, each accelerator was translated to C++

HLS code using Vitis HLS. We constrained all designs to
8 multipliers and compared them with a dense baseline to

def inner_product_csr_csc(csrA, cscB):

dataA, indicesA, indptrA, shapeA,
input_conversion_overheadA = csrA

dataB, indicesB, indptrB, shapeB,
input_conversion_overheadB = cscB

conversion_overhead =
input_conversion_overheadA +
input_conversion_overheadB

totalOPs = 0

m, kA = shapeA

kB, n = shapeB

if kA != kB:
raise ValueError ("Inner dimensions_do_,
not _match_for multiplication.™)

Initialize the result matrix as a dense
array

C = [[0 for _ in range(n)] for _ in range(
m)]

For each row of A (in CSR format)
for i in range(m) :
row_start = indptrA[i]
row_end = indptrA[i + 1]
row_indices = indicesA[row_start:
row_end]
row_values = dataA[row_start:row_end]
For each column of B (in CSC format)
for j in range(n):
col_start = indptrB[j]
col_end = indptrB[j + 1]

col_indices = indicesB[col_start:
col_end]

col_values = dataB[col_start:
col_end]

Compute the dot product of A[i
,:]1 and B[:,]]
dot = 0
a_ptr, b_ptr = 0, 0
while a_ptr < len(row_indices) and
b_ptr < len(col_indices):
a_index = row_indices[a_ptr]
b_index = col_indices[b_ptr]
totalOPs += 1;
if a_index == b_index:
dot += row_values[a_ptr] =
col_values|[b_ptr]
a_ptr +=1
b_ptr +=1
totalOPs +=1;
elif a_index < b_index:

a_ptr += 1
else:
b_ptr +=1
C[i][j] = dot

print ("inner product,_with_ CSRxCSC_inputs_,
number of operations:_ ", totalOPs+
conversion_overhead, " _ (", totalOPs, "
+", conversion_overhead, ")")

return C

Fig. 5. Python code for Inner Product.

analyze how each dataflow handled varying matrix sparsity
levels.

A. Vitis HLS: Baseline

In this section, we describe the translation of these Python
algorithms to corresponding accelerators written in C++ and
compiled with Vitis HLS. In particular, we design one accel-
erator for each of the dataflows and analyze their performance
and resource utilization.

To establish a baseline for our sparse GeMM accelerators,
we implemented a dense GeMM accelerator. This accelerator
used standard dense representations of the matrices during data
transfer and used an outer-product-based flow to perform the
computation. We limit this design to eight multiplier units,
which we enforce across our sparse GeMM implementations
to get a fair analysis of the sparsity-aware optimizations, which
would no longer be influenced by the computation resources
available. Moreover, we limit the matrices to be fixed at 32x32
elements of unsigned integers to limit the scope of this project
to computation-based optimizations involving sparsity.

Table II shows the performance and resource utilization
of this Dense GeMM baseline. The design takes about 1000
cycles to load data, 4098 cycles to perform the main com-
putation, and 1000 cycles to send the data back to memory.
This computation time is optimal for dense matrices in our test
case. Assuming that it takes 1 cycle to perform a multiply-and-
accumulate operation, it would take 32,768 cycles to perform
the matrix multiply computation with 32x32 matrices and just
one MAC unit because matrix multiplication is an O(N?)
operation. So with 8 MAC units, we bring the computation
down to just 32,768 / 8 = 4,096 cycles, which is virtually our
computation cycle count.

In terms of resource utilization, the design consumes 24
DSPs because the tool uses 3 DSPs to construct a multiplier
for 32-bit numbers. Moreover, the design uses 32 BRAMs,
2490 FFs, and 5940 LUTSs to store the data and facilitate
the computation. These resource and performance metrics will
serve as the reference point to evaluate the sparse accelerators.

TABLE II
DENSE GEMM (BASELINE) METRICS
Total Cycles 6317
Compute Cycles | 4098
BRAM 32
DSP 24
FF 2490
LUT 5940

B. Inner Product Accelerator Design

In this section, we discuss the design of the inner-product
accelerator as implemented in Vitis HLS. Recall that in an
inner-product flow, the dot product of a row of A and a column
of B is taken to fully compute one element of C before moving
on to the subsequent elements of C. In order to take advantage
of the sparsity in this flow and reduce the computation, we note
that only nonzero pairs between the row of A and column of

B contribute toward the output. With this intuition, the first
iteration of the design started from the inner-product Python
implementation that used the CSR and CSC data formats.

In principle, these compressed formats allow us to quickly
find the nonzero values across a given row (in the case of CSR)
or a given column (in the case of CSC) and its corresponding
index. However, the index-matching paradigm of the inner-
product dataflow makes using these formats challenging. In
other words, given that row A has a nonzero at index Kk,
it is hard to determine whether column B has a nonzero
value at that same index without performing a linear search,
which is expensive. Moreover, because this search is non-
trivial with these formats, the parallelization of the dot product
also becomes challenging.

Ultimately, we converted the input matrices back to dense
formats and used a different method of index matching in
the final inner-product design. First, we used bit vectors to
quickly highlight the nonzero values across the rows of A
and columns of B. Then, given a row of A and a column of
B, we performed the AND of the corresponding bit vectors,
which quickly identifies the nonzero pairs. We then passed this
information to an intersection unit inspired by the Trapezoid
design, which takes the row of A and column of B and shifts
them such that the nonzero pairs align to one side of the
resulting vectors [1]. Finally, based on the number of pairs
found, the resulting vectors are streamed to the dense MAC
units. With this intersection unit, we simplify the control
logic used to perform the index matching in our inner-product
accelerator, saving us some cycles.

Moreover, since we use bit vectors to represent nonzero
elements in the matrices A and B, we can quickly identify
rows of A or columns of B that have all zeroes. Thus, we
optimize our inner-product design further by keeping track
and iterating through only nonzero rows of A and nonzero
columns of B, which saves more cycles as sparsity increases.

These two sparsity-aware optimizations are the main com-
putation optimizations used in the design of our inner-product
accelerator. However, we also optimize data movement by
using the coordinate format to store the matrix C. Since the
inner-product dataflow only works on one element of C per
loop of the K index, the outputs can easily be streamed
into our coordinate data structure. Moreover, since this data
structure only contains nonzero elements, we save cycles in
data movement (given that matrix C is sparse) as we write the
nonzero results back to DRAM.

With these three optimizations, our final inner-product de-
sign performed much better than the initial design. However, it
only starts to outperform the baseline in performance at lower
densities than 15%, given in figures 6 and 7. This performance
was unexpected because inner-product sparse GeMM accel-
erators from prior works generally had higher performance
in the mildly-sparse ranges. But we believe that this lower
performance was due to the slightly higher cycle count in
the innermost loop due to the control logic responsible for
allocating the 8 multipliers and performing the accumulation.
Designing this section to be more stream-based rather than

iterative could have simplified the control logic, allowing us to
reclaim the extra cycles and regain the performance. However,
we were unable to incorporate this update in the final design.

The table below lists the resource utilization by our inner-
product design. The design consumes about 2x more BRAMs
and 4x more FFs and LUTs compared to the baseline.

TABLE III
INNER-PRODUCT ACCELERATOR RESOURCE UTILIZATION
BRAM 72
DSP 24
FF 7067
LUT 23341

C. Outer Product Accelerator Design

In this section, we discuss the outer-product accelerator as
implemented in Vitis HLS. Recall that in the outer-product
dataflow, a column of A and a row of B are taken to produce
partial results for the full matrix C. In particular, every element
in the column of A is crossed with each element in the row of
B to produce each element in the partial matrix of C. Thus,
unlike in the inner-product dataflow, index matching is not an
issue in this design. Therefore, it is easier to incorporate the
CSC format for A and CSR format for B as in the Python
implementation and directly work with that to produce the
final matrix C.

However, while working with both of these formats was
trivial in a sequential manner, they were surprisingly difficult
to parallelize. While we could quickly determine when a
column or row would begin or end in the CSR/CSC formats,
it was difficult to effectively partition the data structures that
stored these input matrices in these formats, which led to
resource utilization conflicts.

To overcome this issue, we needed a data format that was
regular so that it was easy to partition, but it still needed to
take advantage of the sparsity. Thus, we ended up using the
ELLPACK format to store the input matrices. Effectively, for
a given k index, all nonzero elements in the m direction for
A or n direction for B are shifted to one side of the matrix,
and the m and n indices are saved. This data format makes
it regular to access the input matrices along the k dimension
while offering compression in the m and n dimensions. Taking
advantage of this data format, we split the 8 MAC units across
the k dimension, enabling parallelism in our outer product
design. In other words, each MAC unit is responsible for a
set of columns of A and row of B, producing partial matrices
for each. Once all partial matrices are produced, they are all
reduced via accumulation to produce the final matrix C before
they are sent to DRAM. This data format optimization and
parallelism are the key performance optimizations for our outer
product design.

Although the outer-product design should have significantly
higher resource utilization due to the large arrays used to store
each partial matrix, the resource utilization was surprisingly
small. The table below depicts this design’s resources. This
design only uses 20% more BRAMs and 2x more FFs and

LUTs than the baseline, beating our inner-product design.
Moreover, this accelerator performs the best of all the designs
as depicted in figures 6 and 7. At high density, the accelerator
performs on par with the baseline. And at densities lower than
90%, the accelerator starts to beat the baseline. Overall, we
are content with the results of this outer-product accelerator.

TABLE IV
OUTER-PRODUCT ACCELERATOR RESOURCE UTILIZATION
BRAM 40
DSP 24
FF 4672
LUT 9122

D. TRGT Accelerator Design

The TRGT (Tile-Reordered Gustavson-Type) accelerator
implements the Trapezoid-style sparse matrix multiplication
algorithm [1], where the output matrix C' is computed tile-by-
tile using a fine-grained 5D tiling structure. Each tile corre-
sponds to a partitioned region in C[M2][M1][MO][N1][NO],
and each compute unit processes a specific tile in a pipeline
of three stages: loading, computing, and storing.

Our HLS implementation incorporates the following key
design choices and optimizations:

o Tiled Matrix Layout and Dataflow: Matrix A
is partitioned into 3D tiles [M2][M1][MO][K], ma-
trix B into [N1][K][NO], and the output C into
[M2][M1][MO][NO]. We use a tile_id loop over
M2 x N1, and apply HLS #pragma DATAFLOW to
overlap the execution of each tile’s stages: loading B,
computing tile values, and writing results back to mem-
ory.

« Bitvector-based Sparsity Filtering: We generate bitvec-
tors for each row of A and column of B using
ap_uint<K>, indicating nonzero locations. An AND
operation between these vectors quickly identifies which
multiplications are necessary, enabling early exit for
entirely sparse positions.

o Index Compaction via k-list Compression: For each
output index (ml1,m0,n0), active k-indices are com-
pacted into a k_1list[] array, which stores only the
positions where both A and B are nonzero. This prevents
unnecessary MACs on zero-valued elements.

o Unrolled MAC Accumulation: The
mac_accumulate () function computes partial
sums across active k values. It uses an unrolled loop to
process up to 8 entries in parallel, supported by a fully
partitioned partial [8] buffer, effectively simulating
a wide SIMD lane.

o Buffer Partitioning for Parallelism: Buffers such as
A_buf, B_buf[K][NO], C_tile[M1][MO] [NO],
and k_1ist are fully partitioned to support concurrent
access across loops. This maximizes instruction-level
parallelism and reduces pipeline stalls.

o Tile-Level Modularity: The accelerator separates
functionality into three HLS modules—load_B_buf,

compute_tile, and store_C_tile—for clarity,
reuse, and synthesis friendliness. Each module is
designed for pipeline execution with #pragma
HLS INLINE off and loop-level #pragma HLS
PIPELINE to ensure throughput is maximized at each
stage.

This implementation captures the essence of the Trapezoid
TRGT flow while enriching it with sparse-aware optimizations
and hardware-friendly restructuring. These features enable
efficient MAC utilization and minimize computation on zero
elements, making it a suitable architecture for high-sparsity
workloads.

E. HLS Performance Evaluation

We measured HLS cycle counts under two sparsity regimes:

1) DxD to SpxSp: Both A and B are sparse.
2) DxD to DxSp: Only B is sparse.

The figures below show the total latency (in cycles) across
different sparsity levels.

Total cycle counts sweeping from DxD to SpxSp matrices
Outer = TRGT

- = Baseline = Inner

25000

20000

15000

10000

5000

97 90 80 70 60 50 40 30 20 10 3

Fig. 6. HLS Cycle Count vs. Sparsity (DxD to SpxSp)

All three sparse accelerators show decreasing cycle counts
as matrix density decreases, highlighting the benefit of exploit-
ing sparsity. The baseline dense implementation remains flat
at 6317 cycles. Outer Product consistently outperforms both
Inner Product and TRGT across all density levels, showing
strong sparsity-awareness and better data reuse. Inner Product
improves noticeably at high sparsity (10%) due to its bitvector-
based filtering, but TRGT remains the slowest across all
densities. Despite being designed for sparse workloads, the
TRGT implementation suffers from control and data move-
ment overheads that prevent it from achieving competitive
performance.

When only matrix B becomes sparse, all three dataflows
again benefit from reduced cycle counts. Outer Product re-
mains the best-performing method across all sparsity levels.
Inner Product improves steadily as sparsity increases, and
TRGT, while showing reduced latency, still underperforms
compared to both. At no point does TRGT outperform the
other dataflows, reinforcing the presence of inefficiencies in its
implementation. These results suggest that the current TRGT

Total cycle counts sweeping from DxD to DxSp matrices
Outer = TRGT

- = Baseline = Inner

25000

20000

15000

10000

5000

90 80 70 60 50 40 30 20 10 3

Fig. 7. HLS Cycle Count vs. Sparsity (DxD to DxSp)

design does not fully capitalize on its theoretical advantages,
especially in partially sparse workloads.

X. ANALYSIS
A. Python simulation

A direct performance comparison between Gustavson’s al-
gorithm and the inner and outer product approaches may lead
to misleading conclusions if the inherent properties of the
input formats are not taken into consideration. Gustavson’s
algorithm and other similar row accumulation based dataflows
are typically implemented using CSR format, which enables it
to operate exclusively on nonzero elements and to accumulate
results efficiently on a row by row basis. This built in sparsity
awareness gives Gustavson’s method a significant performance
advantage in sparse matrix multiplication settings.

In contrast, the inner and outer product dataflows are con-
ventionally designed for dense matrix inputs, lacking inherent
mechanisms to exploit sparsity. Their basic formulations as-
sume that every element, including zeros, is processed during
the multiplication and reduction phases. If these approaches
are used without modifications, the comparisons with Gus-
tavson’s algorithm become skewed, as much of Gustavson’s
efficiency is attributable to the sparse format rather than
differences in the underlying multiplication strategy.

Moreover, when the inner and outer product methods are
adapted to accept sparsity aware inputs (CSC and CSR), their
performance improves considerably. In such implementations,
the methods can similarly bypass unnecessary operations asso-
ciated with zero entries. This adaptation brings their efficiency
closer to that of Gustavson’s algorithm in terms of throughput
and resource utilization. Consequently, it becomes clear that
the quality of the input representation can have a profound
impact on performance.

The key takeaway from this is that properly formatted
inputs, which exploit inherent sparsity, are perhaps more
critical to performance than the choice of dataflow alone.
While Gustavson’s algorithm naturally capitalizes on sparse
input representations, the inner and outer product approaches
can achieve comparable gains when extended with CSR/CSC

handling. In hardware accelerator design for sparse matrix
multiplication, emphasis should therefore be placed on op-
timizing input data formats and ensuring that the processing
architecture effectively leverages the sparsity properties, re-
gardless of the specific dataflow method used.

B. HLS

1) inner: While the inner-product accelerator should have
outperformed the baseline for the mildly sparse matrices,
it ended up having a higher latency overall. This was
likely due to the slightly higher cycle count in the
innermost loop because of the control logic. To reduce
this count, a dataflow approach could be taken, which
could save a few cycles and yield the expected results.

2) outer: The outer-product accelerator yielded the best
performance out of all the designs, consistently beating
the baseline. But optimizations could be made to this
accelerator to reduce BRAM consumption. Rather than
storing all the partial matrices before the merge, prior
works often have merging units to reduce the number of
partial matrices needed. An optimization like this could
improve the area of this design.

3) trgt: The TRGT accelerator, based on a tile-reordered
Gustavson-style sparse matrix multiplication, was ex-
pected to outperform Inner and Outer Product in high-
sparsity regimes due to its structured tiling, selective
computation, and bitvector-based filtering. However, our
HLS evaluation shows that TRGT consistently under-
performs both Inner and Outer Product designs across
all tested sparsity levels. To reduce latency, there exist
opportunity for further optimizations:

« Introduce double buffering between tile stages to
enable pipelined tile processing.

o Dynamically allocate MAC units based on active
nonzero count.

« Parallelize across multiple tiles using shared on-chip
buffers.

XI. CONCLUSION

This project has provided valuable insights into the design
and implementation of Sparse GeMM accelerators. By eval-
vating and comparing various dataflow approaches (IP, OP,
Gustavson), we were able to recognize important considera-
tions to increase accelerator performance. Most important are
the format of the input matrices. Our analysis demonstrates
that while Gustavson’s algorithm inherently benefits from
sparse representations, similar gains can be realized in IP and
OP when they adapt to leverage the same structured input
formats. Furthermore, our HLS evaluation across multiple
sparsity levels confirms that properly formatted inputs and ef-
fective memory management are critical to balancing compute
throughput and data movement, regardless of the underlying
dataflow.

The results of our project highlights the importance of
aligning algorithmic strategies with hardware constraints and
input data characteristics to optimize both speed and energy

efficiency. In summary, while different dataflows are most suit-
able for different sparsities, a careful integration of sparsity-
aware representations and flexible dataflows is key to an
efficient and performant accelerator.

REFERENCES
[

—

Y. Yang, J. S. Emer, and D. Sanchez, “Trapezoid: A versatile accelerator

for dense and sparse matrix multiplications,” in 2024 ACM/IEEE 51st

Annual International Symposium on Computer Architecture (ISCA), 2024,

pp. 931-945.

[2] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2020, pp. 766-780.

[3] Y. Nagahara, J. Yan, K. Kawamura, M. Motomura, and T. Van Chu,

“Sparse-sparse matrix multiplication accelerator on fpga featuring

distribute-merge product dataflow,” in 2024 29th Asia and South Pacific

Design Automation Conference (ASP-DAC), 2024, pp. 785-791.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing

fpga-based accelerator design for deep convolutional neural networks,”

in Proceedings of the 2015 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, ser. FPGA "15. New York, NY, USA:

Association for Computing Machinery, 2015, p. 161-170. [Online].

Available: https://doi.org/10.1145/2684746.2689060

[5] J.S. E. Guowei Zhang, Nithya Attaluri and D. Sanchez, “Gamma: Lever-

aging gustavson’s algorithm to accelerate sparse matrix multiplication,” in

in Porceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

'21), 2021, pp. 687-701.

[4

finar}

